Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Sci Adv ; 9(30): eadg1925, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494443

RESUMO

Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its ß-C-terminal fragment (ßCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-ßCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-ßCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-ßCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-ßCTF. Elevated APP-ßCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.


Assuntos
Doença de Alzheimer , Síndrome de Down , Camundongos , Humanos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Doença de Alzheimer/metabolismo , Adenosina Trifosfatases/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
4.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993380

RESUMO

The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation. However, it is not well defined or annotated, which hinders its functional characterization in health and disease. In this series of manuscripts, we aim to operationally define the human proteostasis network by providing a comprehensive, annotated list of its components. We provided in a previous manuscript a list of chaperones and folding enzymes as well as the components that make up the machineries for protein synthesis, protein trafficking into and out of organelles, and organelle-specific degradation pathways. Here, we provide a curated list of 838 unique high-confidence components of the autophagy-lysosome pathway, one of the two major protein degradation systems in human cells.

5.
Brain Res Bull ; 192: 115-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441047

RESUMO

Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.


Assuntos
MicroRNAs , Proteínas de Neurofilamentos , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Axônios/metabolismo , Transporte Axonal , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Autophagy ; 19(4): 1277-1292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36131358

RESUMO

How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.


Assuntos
Autofagia , Filamentos Intermediários , Camundongos , Animais , Autofagia/fisiologia , Proteólise , Filamentos Intermediários/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo
7.
Nat Commun ; 13(1): 5308, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130946

RESUMO

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Doença de Alzheimer/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Inibidores da Colinesterase/metabolismo , Método Duplo-Cego , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Nat Neurosci ; 25(10): 1366-1378, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171428

RESUMO

To characterize the dysregulation of chromatin accessibility in Alzheimer's disease (AD), we generated 636 ATAC-seq libraries from neuronal and nonneuronal nuclei isolated from the superior temporal gyrus and entorhinal cortex of 153 AD cases and 56 controls. By analyzing a total of ~20 billion read pairs, we expanded the repertoire of known open chromatin regions (OCRs) in the human brain and identified cell-type-specific enhancer-promoter interactions. We show that interindividual variability in OCRs can be leveraged to identify cis-regulatory domains (CRDs) that capture the three-dimensional structure of the genome (3D genome). We identified AD-associated effects on chromatin accessibility, the 3D genome and transcription factor (TF) regulatory networks. For one of the most AD-perturbed TFs, USF2, we validated its regulatory effect on lysosomal genes. Overall, we applied a systematic approach to understanding the role of the 3D genome in AD. We provide all data as an online resource for widespread community-based analysis.


Assuntos
Doença de Alzheimer , Cromatina , Doença de Alzheimer/genética , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
9.
Autophagy ; 18(11): 2763-2764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947489

RESUMO

Genetic evidence has increasingly linked lysosome dysfunction to an impaired autophagy-lysosomal pathway (ALP) flux in Alzheimer disease (AD) although the relationship of these abnormalities to other pathologies is unclear. In our recent investigation on the origin of impaired autophagic flux in AD, we established the critical early role of defective lysosomes in five mouse AD models. To assess in vivo alterations of autophagy and ALP vesicle acidification, we expressed eGFP-mRFP-LC3 specifically in neurons. We discovered that autophagy dysfunction in these models arises from exceptionally early failure of autolysosome/lysosome acidification, which then drives downstream AD pathogenesis. Extreme autophagic stress in compromised but still intact neurons causes autophagic vacuoles (AVs) containing toxic APP metabolites, Aß/ß-CTFs, to pack into huge blebs and protrude from the perikaryon membrane. Most notably, AVs also coalesce with ER tubules and yield fibrillar ß-amyloid within these tubules. Collectively, amyloid immunoreactivity within these intact neurons assumes the appearance of amyloid-plaques, and indeed, their eventual death transforms them into extracellular plaque lesions. Quantitative analysis confirms that neurons undergoing this transformation are the principal source of ß-amyloid-plaques in APP-AD models. These findings prompt reconsideration of the conventionally accepted sequence of events in plaque formation and may help explain the inefficacy of Aß/amyloid vaccine therapies.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Peptídeos beta-Amiloides/metabolismo , Lisossomos/metabolismo , Placa Amiloide/metabolismo , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Camundongos Transgênicos
10.
Nat Neurosci ; 25(6): 688-701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654956

RESUMO

Autophagy is markedly impaired in Alzheimer's disease (AD). Here we reveal unique autophagy dysregulation within neurons in five AD mouse models in vivo and identify its basis using a neuron-specific transgenic mRFP-eGFP-LC3 probe of autophagy and pH, multiplex confocal imaging and correlative light electron microscopy. Autolysosome acidification declines in neurons well before extracellular amyloid deposition, associated with markedly lowered vATPase activity and build-up of Aß/APP-ßCTF selectively within enlarged de-acidified autolysosomes. In more compromised yet still intact neurons, profuse Aß-positive autophagic vacuoles (AVs) pack into large membrane blebs forming flower-like perikaryal rosettes. This unique pattern, termed PANTHOS (poisonous anthos (flower)), is also present in AD brains. Additional AVs coalesce into peri-nuclear networks of membrane tubules where fibrillar ß-amyloid accumulates intraluminally. Lysosomal membrane permeabilization, cathepsin release and lysosomal cell death ensue, accompanied by microglial invasion. Quantitative analyses confirm that individual neurons exhibiting PANTHOS are the principal source of senile plaques in amyloid precursor protein AD models.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Placa Amiloide/metabolismo
11.
Sci Adv ; 8(17): eabj5716, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486730

RESUMO

Dysfunction and mistrafficking of organelles in autophagy- and endosomal-lysosomal pathways are implicated in neurodegenerative diseases. Here, we reveal selective vulnerability of maturing degradative organelles (late endosomes/amphisomes) to disease-relevant local calcium dysregulation. These organelles undergo exclusive retrograde transport in axons, with occasional pauses triggered by regulated calcium efflux from agonist-evoked transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) channels-an effect greatly exaggerated by exogenous agonist mucolipin synthetic agonist 1 (ML-SA1). Deacidification of degradative organelles, as seen after Presenilin 1 (PSEN1) loss of function, induced pathological constitutive "inside-out" TRPML1 hyperactivation, slowing their transport comparably to ML-SA1 and causing accumulation in dystrophic axons. The mechanism involved calcium-mediated c-Jun N-terminal kinase (JNK) activation, which hyperphosphorylated dynein intermediate chain (DIC), reducing dynein activity. Blocking TRPML1 activation, JNK activity, or DIC1B serine-80 phosphorylation reversed transport deficits in PSEN1 knockout neurons. Our results, including features demonstrated in Alzheimer-mutant PSEN1 knockin mice, define a mechanism linking dysfunction and mistrafficking in lysosomal pathways to neuritic dystrophy under neurodegenerative conditions.

13.
Cell Death Dis ; 12(11): 1044, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728604

RESUMO

Autophagy is a highly dynamic and multi-step process, regulated by many functional protein units. Here, we have built up a comprehensive and up-to-date annotated gene list for the autophagy pathway, by combining previously published gene lists and the most recent publications in the field. We identified 604 genes and created main categories: MTOR and upstream pathways, autophagy core, autophagy transcription factors, mitophagy, docking and fusion, lysosome and lysosome-related genes. We then classified such genes in sub-groups, based on their functions or on their sub-cellular localization. Moreover, we have curated two shorter sub-lists to predict the extent of autophagy activation and/or lysosomal biogenesis; we next validated the "induction list" by Real-time PCR in cell lines during fasting or MTOR inhibition, identifying ATG14, ATG7, NBR1, ULK1, ULK2, and WDR45, as minimal transcriptional targets. We also demonstrated that our list of autophagy genes can be particularly useful during an effective RNA-sequencing analysis. Thus, we propose our lists as a useful toolbox for performing an informative and functionally-prognostic gene scan of autophagy steps.


Assuntos
Autofagia/genética , Técnicas Genéticas , Transcrição Gênica , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lisossomos/metabolismo , Reprodutibilidade dos Testes , Serina-Treonina Quinases TOR/metabolismo
14.
Front Neurosci ; 15: 689938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646114

RESUMO

Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.

15.
Methods Mol Biol ; 2293: 273-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34453725

RESUMO

The endocytic pathway is a system of dynamically communicating vesicles, known as early endosomes, that internalize, sort, and traffic nutrients, trophic factors, and signaling molecules to sites throughout the cell. In all eukaryotic cells, early endosome functions are regulated by Rab5 activity, dependent upon its binding to GTP, whereas Rab5 bound to GDP represents the biologically inactive form. An increasing number of neurodegenerative diseases are associated with endocytic dysfunction and, in the case of Alzheimer's disease (AD) and Down syndrome (DS), an early appearing highly characteristic reflection of endocytic pathway dysfunction is an abnormal enlargement of Rab5 positive endosomes. In AD and DS, endosome enlargement accompanying accelerated endocytosis and fusion, upregulated transcription of endocytosis-related genes, and aberrant signaling by endosomes are caused by pathological Rab5 overactivation. In this chapter, we describe a battery of methods that have been used to assess Rab5 activation in models of AD/DS and are applicable to other cell and animal disease models. These methods include (1) fluorescence recovery after photobleaching (FRAP) assay; (2) quantitative measurement of endosome size by light, fluorescence and electron microscopy; (3) detection of GTP-Rab5 by in situ immunocytochemistry in vitro and ex vivo; (4) immunoprecipitation and GTP-agarose pull-down assay; (5) biochemical detection of Rab5 in endosome-enriched subcellular fractions obtained by OptiPrep™ density gradient centrifugation of mouse brain.


Assuntos
Proteínas rab5 de Ligação ao GTP/metabolismo , Doença de Alzheimer , Animais , Síndrome de Down , Endocitose , Endossomos/metabolismo , Guanosina Trifosfato , Camundongos , Proteínas rab5 de Ligação ao GTP/genética
16.
Nat Rev Dis Primers ; 7(1): 33, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986301

RESUMO

Alzheimer disease (AD) is biologically defined by the presence of ß-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aß and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Humanos , Emaranhados Neurofibrilares
17.
Cell Rep ; 35(4): 109034, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910020

RESUMO

Lysosomal trafficking and maturation in neurons remain poorly understood and are unstudied in vivo despite high disease relevance. We generated neuron-specific transgenic mice to track vesicular CTSD acquisition, acidification, and traffic within the autophagic-lysosomal pathway in vivo, revealing that mature lysosomes are restricted from axons. Moreover, TGN-derived transport carriers (TCs), not lysosomes, supply lysosomal components to axonal organelles. Ultrastructurally distinctive TCs containing TGN and lysosomal markers enter axons, engaging autophagic vacuoles and late endosomes. This process is markedly upregulated in dystrophic axons of Alzheimer models. In cultured neurons, most axonal LAMP1 vesicles are weakly acidic TCs that shuttle lysosomal components bidirectionally, conferring limited degradative capability to retrograde organelles before they mature fully to lysosomes within perikarya. The minor LAMP1 subpopulation attaining robust acidification are retrograde Rab7+ endosomes/amphisomes, not lysosomes. Restricted lysosome entry into axons explains the unique lysosome distribution in neurons and their vulnerability toward neuritic dystrophy in disease.


Assuntos
Axônios/metabolismo , Complexo de Golgi/metabolismo , Organelas/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
18.
Cell Rep ; 33(8): 108420, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238112

RESUMO

Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-ß secretase cleaved C-terminal fragment (APP-ßCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-ßCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3ß. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from ß-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.


Assuntos
Doença de Alzheimer/genética , Endossomos/metabolismo , Doenças Neurodegenerativas/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Doenças Neurodegenerativas/fisiopatologia
19.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140443, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416272

RESUMO

Lysosomes figure prominently in theories of aging as the proteolytic system most responsible for eliminating growing burdens of damaged proteins and organelles in aging neurons and other long lived cells. Newer evidence shows that diverse experimental measures known to extend lifespan in invertebrate aging models share the property of boosting lysosomal clearance of substrates through the autophagy pathway. Maintaining an optimal level of lysosome acidification is particularly crucial for these anti-aging effects. The exceptional dependence of neurons on fully functional lysosomes is reflected by the neurological phenotypes that develop in congenital lysosomal storage disorders, which commonly present as severe neurodevelopmental or neurodegenerative conditions even though the lysosomal deficit maybe systemic. Similar connections are now being appreciated between primary lysosomal deficit and the risk for late age-onset neurodegenerative disorders. In diseases such as Alzheimer's and Parkinson's, as in aging alone, primary lysosome dysfunction due to acidification impairment is emerging as a frequent theme, supported by the growing list of familial neurodegenerative disorders that involve primary vATPase dysfunction. The additional cellular roles played by intraluminal pH in sensing nutrient and stress and modulating cellular signaling have further expanded the possible ways that lysosomal pH dysregulation in aging and disease can disrupt neuronal function. Here, we consider the impact of cellular aging on lysosomes and how the changes during aging may create the tipping point for disease emergence in major late-age onset neurodegenerative disorders.


Assuntos
Envelhecimento/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Autofagia/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Hidrolases , Estresse Oxidativo , Doença de Parkinson/metabolismo , Proteólise
20.
Brain ; 143(7): 1975-1998, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408345

RESUMO

Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.


Assuntos
Biomarcadores , Filamentos Intermediários , Degeneração Neural , Sinapses , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...